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A successive correction technique, based on generalization to n dimensions of Newton’s 
process for finding zeros of a real function of a real variable, is employed to solve two- 
dimensional steady-state potential flows with free surface and gravity. The fluid domain 
in the physical plane is mapped into the complex potential (q, $) plane where the solu- 
tion for the vertical coordinate y(y, #) is sought. A specific application to the analysis of 
large-amplitude solitary waves has heen made; the results are in good agreement with 
experiments. 

1. INTRODUCTION 

The phenomenon of a solitary wave traveling in a rectangular channel of 
uniform depth was first reported by John Scott Russell in 1834. Russell defined 
the solitary wave as a single elevation above the surrounding undisturbed water 
level, neither followed nor preceded by any other elevation or depression of the 
surface, producing a definite transport in the direction of wave propagation only, 
and traveling without change of shape and with essentially constant velocity 
throughout the observable time of travel [I]. Subsequent analytic studies were made 
by Saint Venent, J. Boussinesq, Lord Rayleigh, G. G. Stokes, J. McGowan [I] 
and others. Recent investigations include Laitone’s [2] higher-order theory, 
Grimshaw’s [3] third-order theory, and Fenton’s [4] ninth-order solution. 

The most convenient coordinate system to describe the solitary wave in an 
infinitely long channel of constant depth is one that moves at the same speed as the 
wave. Because of the constant speed and shape of the wave, this choice of 
coordinate system reduces the time-dependent problem to a steady-state problem. 
The effect of viscosity is believed to be negligible. Thus, the flow is assumed to be 
invicid, irrotational, and incompressible; this permits a formulation in terms of the 
velocity potential v (Fig. 1). 

For two-dimensional potential flows we have the following relationships: 

and 
u = aTlax = a+/ay (1) 

v = aTlay = -a*/ax, 
32 

(2) 
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FIG. 1. Definition sketch. 

where u is the velocity component in the x-direction, v is the velocity component 
in the y-direction, and $ is the stream function. Within the fluid, the governing 
equation is the Laplace equation 

(a+p/ax2) + (azq/ay2) = 0. (3) 

On the channel floor, the condition that velocity component normal to a rigid 
boundary must vanish is expressed by 

aTlay = 0, at y = 0. (4) 

At infinity the flow is essentially uniform; thus, 

aqpx = u, ) x=&co (5) 

where U,, is the speed of the uniform flow and is the same as the speed of the wave 
when observed from a fixed coordinate system. 

The free-surface condition is simply that the pressure must be a constant, or 
p = 0 if zero is chosen as the constant. To express this condition in terms of the 
velocity potential, the Bernoulli equation is used: 

at y = 7 + d, where rl is the free-surface elevation measured upward from the 
water level at infinity (where the water depth is d), g is the acceleration due to 
gravity, and B,, is the Bernoulli constant. Equation (6) is a nonlinear boundary 
condition which accounts for the major difficulty of the problem. Because of this 
nonlinearity, analytic theories so far available are approximate to varying degrees. 
Their validity is necessarily limited by the approximations made. 

Daily and Stephan [l] conducted a series of careful experiments to determine 
the profile and speed of the solitary wave and some information about the interior 
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fluid motion in the wave. Their experimental data indicate that the analytic 
theories are generally adequate for waves of moderate or small amplitudes. For 
larger amplitudes, theoretical results diverge from those of the experiments. For 
example, Daily and Stephan showed the profile given by Boussinesq’s theory is the 
most satisfactory among the analytic results for the height-to-depth ratio Z&/d less 
than about 0.4. A significant discrepancy between Boussinesq’s profile and the 
experiments was found for larger values of Ho/d (Fig. 2). 

Lkp : : y-k 
0.03 0.74 1.47 221 2.95 3.68 4.42 5.;6 559 C.63 737 8.11 C 14 

FIG. 2. Comparison of wave profiles. 

In view of the inherent difficulties in handling nonlinear problems by analytic 
approaches, a number of numerical studies have been undertaken in the past few 
years. Of particular value in treating two-dimensional, steady, free-surface flows 
under the influence of gravity is the use of the x and y coordinates as dependent 
variables and the velocity potential F and the stream function II, as independent 
variables. The flow region then becomes a rectangle in the complex potential plane 
(Figs. 3 and 4) and the boundary geometry is greatly simplified. However, the 

FIG. 3. The complex potential plane. 
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FIG. 4. The finite-difference mesh. 

nonlinearity of the problem remains to be the major difficulty in obtaining 
solutions. By formulating the problem in the q~ - # plane, Strelkoff [5] obtained 
solutions to the solitary wave by solving an integro-differential equation. 
Byatt-Smith [6] independently took a similar approach in obtaining profiles for 
the solitary wave of less than maximum height. 

In this paper, the solitary wave problem is solved by using a successive correction 
method which may have wide application in the study of two-dimensional, steady 
potential flows with free surfaces. The numerical procedure involved is presented 
in a form suitable for calculation on a digital computer. 

2. FORMULATION OF THE PROBLEM 

The concepts to be developed here are best illustrated by an example for the 
reason that some of the governing equations must be derived specifically to meet 
the situation of a particular problem. The problem of a steady-state solitary wave 
was selected for demonstration purposes and the subsequent discussions are 
presented in the context of this application. However, there is no loss of generality 
because all of the essential features of the method are developed and utilized. 

In this paper, all lengths are nondimensionalized by d, all accelerations by g and 
consequently, all velocities by ( gd) li2. In this dimensionless system, both g and d 
are unity, and these values are assumed in the following discussions. 

2.1. Formulation in the Physical Plane 

In accordance with the description in Section 1, the two-dimensional flow in a 
solitary wave relative to a coordinate system fixed in the wave can be described 
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in terms of v and #. Because of the symmetry of the solitary wave, the problem 
can be analyzed by taking only half of the flow region. The governing equation 
and pertinent boundary conditions are shown in Fig. 1. 

The problem appears well posed and could be considered solved if a function 
~(x, v) were found to satisfy all the above conditions. Because of the nonlinear 
characteristic of Eq. (6), an analytic approach is rather difficult. In fact, even a 
numerical method is difficult to apply in the configuration shown in Fig. 1, because 
the position of the free surface is not known. Fortunately, we can simplify the 
problem to a certain extent by using the transformation technique described in the 
next section. 

2.2. Formulation in the Complex Potential Plane 

By choosing the velocity potential v and the stream function # as the independent 
variables and regarding the coordinates x and y as the dependent variables, we can 
transform the problem formulated in the previous section into a less complicated 
one in the complex potential or the v# plane (Fig. 3). We use the Implicit Function 
Theorem [7] to derive the partial derivatives of x(y’, #) and y(v, #). 

The Jacobian of the transformation is defined as 

J = adax adaY 
I a+jax a*jay = q2 

where 
q2 = u2 + 02. (8) 

Then, the inverse partial derivatives become 

These inverse partial derivatives will be regular functions in the complex potential 
plane wherever the Jacobian is not zero. Singularities occur wherever J = 0 
(i.e., at stagnation points in the flow field). There usually are no stagnation points 
in a solitary-wave flow. However, when the solitary wave reaches its maximum 
possible height the horizontal speed of the fluid at the crest in the unsteady flow 
is equal to the celerity of the wave; in a steady-state configuration, this means that 
the wave crest is a stagnation point. Thus, Eqs. (9)-(12) hold everywhere in the 
flow except at the crest of a limit-height wave. 
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The relations (9)-(12) can be manipulated to yield a formulation of our problem 
in terms of u(y, #) in the complex potential plane. Because the free surface in a 
steady flow is a streamline along which # = constant, the position of the free 
surface is known in the complex potential plane (Fig. 3) provided that the total 
flow rate Q per unit breadth of channel is prescribed. The additional advantage 
is that the flow region becomes rectangular, which is most desirable when finite- 
difference approximations are employed. In Fig. 3, we have selected the equi- 
potential line which goes through the wave crest as the line v = 0. Also, we let 
S+!I = 0 along the streamline that coincides with the channel floor and Z/J = Q along 
the free surface. 

The boundary conditions can be immediately obtained from their corresponding 
conditions in the physical plane. The results are shown in Fig. 3. Theoretically, 
the boundary condition of CD’ must be applied at infinity. The numerical 
computation, however, has to be carried out in a finite region. Therefore we assume 
that the condition aTlax = U, , which through Eqs. (9)-(12) implies y = #/Q, 
can be applied to a finite location CD without significant loss of accuracy in the 
solution if C’D’ is far enough from A’B’. In actual computation, we first select 
a location for CD’ and then move CD’ farther in the positive y-direction until the 
sequence of solutions converge. 

In nondimensional form, the free surface condition Eq. (6) becomes 

Equations (9)-(12) imply that x(v, #) and y(y, #) are harmonic functions, i.e., 

and 

(a2xpg) + (azx/ap) = 0 (14) 

(aww + (a2mp) = 0. (15) 

Because of the presence of y in the free-surface boundary condition, the problem 
is naturally formulated in terms of the dependent variable ~(9, #) rather than 
4% $0 

The complete formulation in the complex potential plane is summarized in 
Fig. 3. We prescribe the value of Q, which is equal to the wave celerity in non- 
dimensional form, and seek a solution y(y, Ib> in the rectangular domain A’B’C’D’. 
It is seen that the geometry of the fluid domain has been greatly simplified. 
However, the nonlinearity of the free-surface boundary condition remains. A 
method of solution employing successive approximations is presented in the 
following section. 
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3. DISCRETIZED SOLUTION TECHNIQUE 

3.1. Finite-Dlyerence Representations 

To set up a finite-difference scheme the region A’B’C’D’ is subdivided by a 
rectangular grid (Fig. 4). The horizontal position of the grid points is designated 
by the index i which runs from 1 to i max, while j, running from 1 toj max, refers to 
the vertical position of the grid points. These grid points have a horizontal spacing 
of 6p, and a vertical spacing of S$. 

Now Eq. (15) can be written in the finite-difference form 

(65 - 2Yo + Y3Y@P))2) + KY2 - 2Ytl + Y*YW2) = 0 
or 

(16) 

w+ ~)Y*-.Yl--Y2-.YY,--Y4=o (17) 

for any interior point 0 (Fig. 4), where Z = (SI##)~. If the point 0 lies on the 
boundary A’B’, then the boundary condition becomes y3 = y, which can be 
substituted into Eq. (17) to yield 

2(z+ l)y,-22y,-zzy2-zzy,=o. 

At the free surface, Eq. (13) has the finite-difference representation 

(18) 

However, the y2 in Eq. (19) lies outside the fluid region (Fig. 4). We may apply 
Eq. (17) to the point 0 which is at the free surface to obtain an expression for the 
image value y2 in terms of y. , y1 , y3 and y4 and Eq. (19) becomes 

Y, + @do = Bo (20) 

where the “velocity head” (H,), is defined as 

No special treatment is needed for the boundaries B’C’ and CD’ where the 
values of y are fixed throughout the computation. 

3.2. The Correction Equations 

The problem formulated in the last section is nonlinear and no simple methods 
to obtain a solution are yet known. The method to be discussed here is based on 



FREE SURFACE FLOWS WITH GRAVITY 39 

successive correction which is the generalization to n dimensions of Newton’s 
process for finding zeros of a real function of a real variable [8]. First, we guess an 
approximate solution y(v, 1G>. As expected, the governing equation and the 
boundary conditions are not quite satisfied by this approximation. But we can 
construct a correction scheme to improve the guessed y(y, 4) so that the various 
conditions will be closer to being satisfied. 

Let us examine the free-surface condition Eq. (20) which we rewrite in the form 

Yo + WV)0 + wfJo = Bo (22) 

where (H,). is the pressure head which should be zero at the free surface. However, 
(IYI,)~ does not, in general, vanish for the guessed y(v,, #). To make (H,)o = 0 
everywhere on the free surface we must properly adjust the value of y at every 
grid point by a small amount. To evaluate how small changes in the guessed y field 
affect the pressure head (H,). , we take the differential of each term in Eq. (22) 
to obtain 

4H,)o = - co + 4(H& I$$& (Cl - CJ 

2v + 1) 
+ 2& z [ 

co - - c - - cs - 2c, 
tl ; 11 

where c denotes a small change in y, and 

Yw = (Yl - Y&2+3 
and 

2(2 + 1) 
Y&= z 

Yo-;Y1-+Y3-2Y4 
264 

(23) 

(24) 

(25) 

are evaluated using the approximate y(y, #). Equation (23) reveals the various 
contributions to the small change of (HP)o . Now we let cI(ZY~)~ = -(H,>o because 
we wish to reduce (H,), to zero. Then, after rearranging, we have the correction 
equation for the free surface 

where 
mOcO + mlcl + m3c3 + m4c4 = -(HD>o (26) 

m. = CW + ~YZ)GWV)~ YJW - 1, 

ml = Wf~)i Y,/~P) - WXWVX ~$44, 

m3 = -WWi YAW - WXWV~~ vdWl>, 

m4 = -(I: ~&,h 

and (H,). is evaluated by Eq. (22) using the approximate y(~, #). 

CW 

G’6b) 

(26~) 

CW 
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Next, consider Eq. (17) which governs the interior flow region. We define the 
residual 

Ro z 2(Z + 1) yo - y, - zy, - y3 - zy4 (27) 

where R, does not, in general, vanish for the guessed u(~, #) field. Using the same 
idea that led to Eq. (26) we evaluate the differential of each term in Eq. (27) and 
require that the small changes in y, , y1 , etc., should be of such magnitude that 
their combined effect produces dR, = -R, . The result is a correction equation 
for the interior flow region 

2(Z + 1) co - cl-Zcz--cc,-Zc,= -Ro. (W 

Similarly, referring to Eq. (18), the residual for grid points 0 lying on the 
boundary A’B’ is defined as 

Ro=2(Z+1)yo-22y,-Z~,-Z~, (29 

and the appropriate correction equation is 

2(Z + 1) co - 2c, - Zc, - Zcq = -R, . (30) 

On the boundaries B’C’ and C’D’ the values of y need no correction because they 
are prescribed. Consequently, co = 0 is applied there. 

The problem of finding c(y, #) is linear as all the correction equations are 
linear. Indeed, we have locally linearized the nonlinear boundary condition on the 
free surface. For Eq. (26) to be a good approximation, the coefficients given by 
Eqs. (26a-d) must also be good approximations. In other words, the success of 
the correction method presented here requires a reasonably good initial guess 
OfY(% $4 

Also, it is important to note that we can only deal with small corrections. 
However, this requirement does not limit the applicability of the method. We can 
always start with a case which contains a small degree of nonlinearity and for 
which an analytic solution is available. Then, by changing some key parameter 
(or parameters) the nonlinearity can be increased step by step while at the same 
time the successive correction method can be applied to obtain the solution for 
each new step. 

3.3. Solution Techniques 

As soon as the guessed values of y(y, $) are stored in the computer, the 
coefficients of the correction equations, the nonvanishing pressure head (H,). on 
the free surface and the residual R, for interior points and points lying on A’B’ 
can be evaluated. All these quantities are temporarily regarded as constants during 
the process of finding a solution to the current correction field c(y, #). 
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After ~(9, 4) is found, the initially guessed JJ(~, $) is improved by adding the 
value of c at each grid point to its corresponding old value of y. The new JJ(~JJ, 4) 
field thus obtained leads to a smaller absolute value of (H&, on the free surface 
and of R, elsewhere, provided that the starting J(F, #) was reasonably good and 
that the C(QJ, #) field was solved quite accurately. 

Now, a second correction can be made. First, however, the residuals and 
coefficients in the correction equation have to be recomputed from the current 
v(v, 4) field. They are constants only within the current process of finding ~(9, sL>. 
The computation is terminated when the largest magnitudes of (H,)0 and R, 
become less than a prescribed small number. The most recently obtained y(v, II/) 
field is then taken as the solution. 

The method of solving c(cp, Z/J) deserves some consideration. It is clear that all 
the correction equations are linear so this is really a problem of solving a set of 
simultaneous linear algebraic equations. Because the free surface boundary 
condition for c is of the mixed type, this system of linear equations is quite sensitive 
and cannot be properly handled by the relaxation method. Consequently, the 
direct Gauss Elimination Method [8] is employed to solve for c(v, 4). 

Calculating x(v, z/), u(y’, +), u(~, #) and p(y, $) is a relatively simple matter 
after y(v, #) is obtained. Using the Cauchy-Riemann condition ax/+ = @/a#, 
which can be derived from Eqs. (9)-(12), we integrate to obtain 

(31) 

since we have chosen 9 = 0 at x = 0. Each horizontal line in the finite-difference 
mesh (Fig. 4) represents a streamline along which # = constant. Evaluation of 
Q$+L at any grid point can be easily performed with finite differences. The integral 
in Eq. (31) can be evaluated numerically by using any of the well-established 
procedures. We selected the Adams-Moulton corrector [9]. 

By using the computed values of x(y, $) and y(q, +) to trace the curve along a 
16 = constant line, we immediately obtain a streamline in the physical plane. An 
equipotential line in the physical plane can be similarly obtained by plotting pairs 
of x and y values related to a vertical line (p’ = constant) in the complex potential 
plane. Figure 5 is an example of such a plot. 

The velocity components u and z, are calculated by using the inverse partial 
derivative relations: 

and 
u - w/~~wYl~~)2 + @Y/~$)21-1. (33) 

Finally, the pressure distribution in the interior of the flow is obtained from the 
Bernoulli equation. 
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FIG. 5. An example of the computed flow pattern. 

4. RESULTS AND CONCLUSIONS 

To obtain the solitary wave solutions, it is necessary to devise a systematic 
way of obtaining a guessed y(p7, #). Because the nondimensional wave speed or the 
discharge Q of the steady flow is prescribed, we can compute an approximate value 
for the wave height H,, by the well-known formula 

Q = (1 + H,,)1/2 (34) 

for the speed of a long, finite-amplitude wave [IO]. Next, we want to find an 
approximate distribution of y along the free surface A’D’ (Fig. 3). There, 

v/u = dyldx. (35) 

But CJJ = C&Y, y). Taking the differential of y, we get 

dp, = u dx + v dy. (36) 

Eliminating o between Eqs. (35) and (36) leads to 

dxlds, = l/d + bWW21, (37) 

where u can be estimated as the average horizontal velocity Q/y, which is a 
reasonable approximation for Ho < 0.3. Thus, Eq. (37) becomes 

dxlds, = Y/QP + @ylW21. (38) 

Now, we use the classical formula of Boussinesq for the wave profile 

yB(x) = 1 + IT,, sech2[(3H,,)1/2x/2]. (39) 
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Substituting Eq. (39) into (38) gives the desired formula for our purpose: 

Wdg, = WQ><Y,W(~ + ~B’WI~N = fW (40) 

Finally, by integrating Eq. (40) numerically, we obtain x(y) along the free surface 
A’D’. The corresponding y(v) along A’D’ are then computed from Eq. (39). The 
interior distribution of y is obtained by solving the Laplace equation (16) using the 
successive over-relaxation method [ 111. 

Three different mesh sizes were tested, namely 40 x 10, 60 x 10 and 50 x 20. 
Little difference was observed in the results of the two finer meshes, the difference 
in y values being less than 0.3 %. Because the surface pressure and corrections dealt 
with here are small, it is necessary to carry out the computations in double 
precision. To solve a single problem by this method takes about 1.0 min on the 
IBM 360/67, including program compilation and execution. 

Statistics of a typical calculation (Ho/d = 0.717) are shown in Table I, where the 

TABLE I 

Correction 
sequence 

Maximum Maximum 
absolute absolute 

value of H, value of R 

Wave 
amplitude 

Hold 

0 6.76 x lo-’ 2.33 x lo-” .73OOOOO 
1 6.31 x lo-’ 3.25 x 1O-2 .7741568 
2 1.12 x lo-* 3.36 x 1O-s .7307247 
3 1.60 x 1O-3 9.92 x 10-t .7170046 
4 2.89 x 1O-5 1.84 x 1O-6 .I114794 
5 9.87 x 1O-9 6.30 x 1O-9 .7174882 
6 10-14 10-G .7174882 

Statistics of the computations for the case in which the prescribed discharge Q = 1.285. The 
size of the mesh used was 60 x 10. 

maximum absolute values of (H,), and R, are seen to have been reduced from the 
order 1O-2 to about lo-14, while the wave amplitude stabilized to the final value 
Ho/d = 0.7174882. Convergence was observed at every grid point of the y field. 
We found that the rate of convergence accelerates as the residuals become smaller. 
This type of convergence, called quadratic convergence, is ultimately very fast, 
in the sense that the number of good decimal digits eventually roughly doubles 
after each correction until the round-off limit in the computer is reached [S]. 

It is interesting to note that the formulation as sketched in Fig. 3 has a trivial 
solution, namely the uniform flow. Thus, it appears that success of the correction 
method would require a very accurate initial guess of y(q, +). However, in Table II 
we show that a considerable deviation in the initial guess from the true solution 
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TABLE II 

Correction Hold 
sequence (Case 1) 

Hold 
(Case 2) 

H,,‘d 
(Case 3) 

0 .37OOOOO .4OOOOOO .45OOOOO 
1 .3953959 .3963490 .3991797 
2 .3944176 .3944206 .3944828 
3 .3944090 .3944090 .3944090 
4 .3944090 .3944090 .3944090 

For the given parameter Q = 1.176 and a mesh with 40 x 10 grids, three different guesses of 
the wave amplitude converged to the same solution after three corrections. 

can be tolerated. For Q = I,1760 we guessed three different starting values for 
H&I, namely 0.37, 0.40 and 0.45. Computations based on these different guesses 
converged to the same value H,,/d = 0.3944090 after three corrections. Also, the 
convergence was observed at every grid point of the y field. 

Because we can obtain a value of Ho/d corresponding to a specified Q, we are 
able to compute and plot the wave celerity C/( gd)l/* versus Ho/d for a range of 
Ho/d. The resulting curve is shown in Fig. 6 and compared with other theories. 
The experimental data used here are due to Daily and Stephan [l]. The prediction 
given by the present method appears to be in better agreement with the experiments 
than other theories. The curve that we have obtained is also very close to the curve 
given by Laitone [2] which is not shown on our plot. 

Daily and Stephan found that Boussinesq’s formula (Eq. (39)) gives the most 
accurate analytic prediction of the wave profile. When Ho/d > 0.4, however, the 

FIG. 6. Comparison of the wave speed. 
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discrepancy between experiments and Eq. (39) grows. fn Fig. 2, the present 
computed wave profile for H,,/d = 0.594 is compared with Boussinesq’s profile 
and measurements. The present solution is in strikingly good agreement with the 
experiment. 

In Figs. 7 and 8, contours of u/C and 21/C are plotted for I&,/d = 0.509 so 
that direct comparison with McGowan’s theory and Daily and Stephan’s data 

FIG. 7. Comparison of u/C distribution (wave speed C = I.217 (gd)1/2). 

FIG. 8. Comparison of u/C distribution (wave speed C = 1.217 (gd)“*), 
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can be made. Considering the difficulty of measuring fluid particle velocities under 
transient conditions this comparison is only qualitative. Under the wave crest, 
experimental measurement of u/C is more easily performed than in any other part 
of the fluid. Comparisons with Daily and Stephan’s limited data are shown in 
Fig. 9 where the theoretical results of McGowan and Laitone are also compared. 
The conclusion is that the numerical results are very close to experimental data 
and McGowan’s theory in u/C while Laitone’s theory tends to overestimate u/C 
under the wave crest. 

FIG. 9. Comparisons of u/c under the wave crest. 

6 

As a part of this investigation, we are also interested in determining the maximum 
possible value of Ho/d of a solitary wave. The method of guessing y(y, #) as 
outlined above is good for Ho/d < 0.72. As a rule, the number of corrections 
needed to solve the problem increases with an increase in the value of H,,/d. This 
is simply because the Boussinesq profile Eq. (39) deviates more from the true 
solution and u along the free surface is quite different from Q/y if Ho/d is large. 
Therefore, to obtain a wave with H,,/d > 0.72 we have to increase the amplitude 
by increasing the discharge Q gradually. The highest wave thus obtained, the 
flow pattern of which is shown in Fig. 5, had H,,/d = 0.81. For this wave, the 
velocity head at the crest was HY = 0.04. Thus, this case does not represent the 
maximum-height wave for which HY would have to be zero. 

Theoretically, HY = 0 cannot be achieved by the method presented here 
because we have assumed q2 # 0 in our previous derivations of the inverse 
functions x(y, $I) and y(q, t/). However, by plotting HY at the crest versus Ho/d 
(Fig. 10) and HY at the crest versus Q (Fig. 11) we can estimate the value of 
(H,ld)max by extrapolation. From Eq. (6) it can be shown that H,,/d = Q2/2 at 
maximum wave height. Thus, the intersection of the Q versus H,/d curve and 
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FIG. 10. Extrapolation to find the maximum Ho/d. 

47 

FIG. 11. Extrapolation to find the maximum Q. 

H,,/d = Q2/2 curve in Fig. 6 should also yield the maximum value of H,,/d. From 
these extrapolations, we find (Ho/d)m, = 0.855 with the corresponding Q = 1.307. 
Strelkoff [5] and Fenton [4] both obtained (H,,/d&,, = 0.85 with Q = 1.304. 

Finally, the question of selecting a sufficiently large value for v)m (Fig. 3) such 
that the accuracy of solution is not affected can be settled by a simple experiment. 
In Fig. 12 we compare the calculated wave profiles corresponding to five different 
choices of v* . Clearly, the wave profiles converge to a definite shape as y)m is 
increased. 

The method developed here can be applied to many other two-dimensional flow 
problems. The flow over a smooth step in an open channel of constant width is an 
example which can be readily analyzed by the present computer program for the 
solitary wave with only a little modification. A second example is a two-dimensional 
jet flow under the influence of gravity. It is clear, from our treatment of the solitary 
wave, that very similar techniques can be employed to study periodic waves of 
finite amplitude. 

581/16/r-4 
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X/D 

FIG. 12. Convergence of the surface profile as pm increases. The solid line corresponds to the 
smallest value for qrn . Then the value of vrn is increased according to the following sequence of 
symbols: 0 x A l . 
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